Tracking the Diffusion of Named Entities
نویسندگان
چکیده
Existing studies of how information diffuses across social networks have thus far concentrated on analysing and recovering the spread of deterministic innovations such as URLs, hashtags, and group membership. However investigating how mentions of real-world entities appear and spread has yet to be explored, largely due to the computationally intractable nature of performing large-scale entity extraction. In this paper we present, to the best of our knowledge, one of the first pieces of work to closely examine the diffusion of named entities on social media, using Reddit as our case study platform. We first investigate how named entities can be accurately recognised and extracted from discussion posts. We then use these extracted entities to study the patterns of entity cascades and how the probability of a user adopting an entity (i.e. mentioning it) is associated with exposures to the entity. We put these pieces together by presenting a parallelised diffusion model that can forecast the probability of entity adoption, finding that the influence of adoption between users can be characterised by their prior interactions – as opposed to whether the users propagated entity-adoptions beforehand. Our findings have important implications for researchers studying influence and language, and for community analysts who wish to understand entity-level influence dynamics.
منابع مشابه
PAYMA: A Tagged Corpus of Persian Named Entities
The goal in the named entity recognition task is to classify proper nouns of a piece of text into classes such as person, location, and organization. Named entity recognition is an important preprocessing step in many natural language processing tasks such as question-answering and summarization. Although many research studies have been conducted in this area in English and the state-of-the-art...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملبهبود شناسایی موجودیتهای نامدار فارسی با استفاده از کسره اضافه
Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملسیستم شناسایی و طبقهبندی موجودیتهای اسمی در متون زبان فارسی بر پایه شبکه عصبی
Named Entity Recognition (NER) is a fundamental task in natural language processing and also known as a subset of information extraction. We seek to locate and classify named entities in text into predefined categories such as the names of persons, organizations, locations, expressions of times, etc. Named Entity Recognition for English texts has been researched widely for the past years, howev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.08349 شماره
صفحات -
تاریخ انتشار 2017